Baseten Support¶
GenAI Bench provides support for Baseten model endpoints, including multiple request and response formats.
Overview¶
The Baseten backend can handle both OpenAI-compatible chat format and a simple prompt format. This allows benchmarking of both instruct-tuned and base models.
Key Features¶
Dual Request Format Support¶
OpenAI-Compatible Format (Default)
- Uses {"messages": [{"role": "user", "content": "..."}]} structure
- Compatible with instruct-tuned models
- Supports image content for vision models
Simple Prompt Format
- Uses {"prompt": "..."} structure
- Suitable for non-instruct models
- Enabled via {"use_prompt_format": true} in additional_request_params
Streaming Control¶
- Supports both streaming and non-streaming responses
- Uses global
--disable-streamingflag (consistent with other backends) - Automatically filters out
streamparameter fromadditional_request_params
Response Format Flexibility¶
- Handles OpenAI-compatible JSON responses
- Non-OpenAI format: Automatically detects and parses various JSON field names (
text,output,response,generated_text) or plain text responses
Usage Examples¶
Basic OpenAI-Compatible Format¶
genai-bench benchmark \
--api-backend baseten \
--api-base "your-endpoint-url" \
--api-key "your-baseten-api-key" \
--api-model-name "Qwen3-30B-A3B-Instruct-2507-FP8" \
--model-tokenizer "Qwen/Qwen3-30B-A3B-Instruct-2507" \
--task text-to-text \
--max-requests-per-run 200 \
--num-concurrency 8 \
--max-time-per-run 600 \
--additional-request-params '{"temperature": 0.7}'
Simple Prompt Format for Non-Instruct Models¶
genai-bench benchmark \
--api-backend baseten \
--api-base "your-endpoint-url" \
--api-key "your-baseten-api-key" \
--api-model-name "Mistral-7B-v0.1" \
--model-tokenizer "mistralai/Mistral-7B-v0.1" \
--task text-to-text \
--additional-request-params '{"use_prompt_format": true, "temperature": 0.7}' \
--num-concurrency 1 \
--traffic-scenario "N(100,100)/(100,100)"
Non-Streaming Mode¶
genai-bench benchmark \
--api-backend baseten \
--api-base "your-endpoint-url" \
--api-key "your-baseten-api-key" \
--api-model-name "test-model" \
--model-tokenizer "test/tokenizer" \
--task text-to-text \
--disable-streaming \
--additional-request-params '{"use_prompt_format": true, "temperature": 0.7}'
Image-to-Text Benchmarking¶
genai-bench benchmark \
--api-backend baseten \
--api-base "your-endpoint-url" \
--api-key "your-baseten-api-key" \
--api-model-name "vision-model" \
--model-tokenizer "vision/tokenizer" \
--task image-text-to-text \
--dataset-path /path/to/images \
--max-requests-per-run 50 \
--max-time-per-run 10
Request Format Details¶
OpenAI-Compatible Format Payload¶
{
"model": "model-name",
"messages": [
{
"role": "user",
"content": "Hello, world!"
}
],
"max_tokens": 100,
"temperature": 0.7,
"ignore_eos": true,
"stream": true,
"stream_options": {
"include_usage": true
}
}
Simple Prompt Format Payload¶
Image Content Format¶
{
"model": "vision-model",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Describe this image"
},
{
"type": "image_url",
"image_url": {
"url": "_image_data"
}
}
]
}
],
"max_tokens": 100,
"temperature": 0.7,
"stream": true
}
Response Handling¶
OpenAI-Compatible Response¶
{
"choices": [
{
"message": {
"content": "This is the generated response"
}
}
],
"usage": {
"prompt_tokens": 10,
"completion_tokens": 50,
"total_tokens": 60
}
}
Simple Text Response¶
JSON Response with Alternative Fields¶
Parameter Filtering¶
The Baseten backend automatically filters out certain parameters from additional_request_params:
stream: Always controlled by global--disable-streamingflaguse_prompt_format: Used internally for format selection, not sent to API
Other parameters (like temperature, top_p, etc.) are passed through to the API.
Error Handling¶
The backend provides robust error handling for:
- Network connection issues
- HTTP error responses
- Malformed JSON responses
- Plain text responses
- Missing or invalid authentication
Environment Variables¶
You can use environment variables for authentication:
Supported Tasks¶
- text-to-text: Text generation with both formats
- image-text-to-text: Vision tasks with OpenAI format
- text-to-embeddings: Embedding generation (if supported by model)
Best Practices¶
- Use OpenAI format for instruct models: Models like Qwen-Instruct, Llama-Instruct, etc.
- Use prompt format for base models: Models like Mistral-7B-v0.1, base Llama models, etc.
- Set appropriate temperature: Avoid
temperature: 0.0which may cause model server errors - Test with small scenarios first: Use
--num-concurrency 1and small traffic scenarios for initial testing - Monitor logs: Watch for warnings about token estimation and response parsing
Troubleshooting¶
Common Issues¶
-
Model Endpoint: Verify the full URL is correct and the model is deployed and running
-
Authentication Issues: Ensure your API key is correct and has proper permissions
-
Temperature Error: If you see
ValueError: temperature (=0.0) has to be a strictly positive float, settemperature: 0.7inadditional_request_params -
Response Parsing Errors: The backend automatically handles various response formats, but check logs for parsing warnings
Debug Mode¶
Enable debug logging to see detailed request/response information: